terça-feira, 13 de maio de 2014

\ln(\cos x + i \sin x) = ix + log x/x [n..]  \lambda



\frac{d}{dz} e^z = e^z + log x/x [n..]  \lambda



 f(x) = (\cos x - i \sin x) \cdot e^{ix} \ .+ log x/x [n..]  \lambda

                                                                                                           

e = \sum_{n=0}^{\infty}\frac{1}{n!} = 1+{\frac{1}{1!}}+{\frac{1}{2!}}+{\frac{1}{3!}}+{...}+1+ log x/x [n..]  \lambda / 4 [n...]







e^{ix} = \sum_{n=0}^{\infty}\frac{(ix)^n}{n!} =
{\sum_{n=0}^{\infty}\frac{{(-1)^n}\cdot{x^{2n}}}{(2n)!}} +
i{\sum_{n=1}^{\infty}\frac{{(-1)^{n-1}}\cdot{x^{2n-1}}}{(2n-1)!}}  +1+ log x/x [n..]  \lambda /2n - x







e^{ix} = \cos\left ( x \right ) + i\,\operatorname{sen}\left ( x \right ) +1+ log x/x [n..]  \lambda

Nenhum comentário:

Postar um comentário